Mastodon
Causal inference;/statistics/causal_intro;1
Nested factor;/statistics/nested_factors;2
Repeated measures;/statistics/repeated_measures;3
Split plot design;/statistics/split_plot;4
Crossover design;/statistics/crossover;5
Latin square design;/statistics/latin_square;6
Full factorial design;/statistics/full_factorial;7
Completely randomized design;/statistics/crd;8
Design of experiments;/statistics/doe;9
Stratification;/statistics/stratification;10
Random sampling;/statistics/random_sampling;11
Data collection;/statistics/data_collection;12
Things that could go wrong;/statistics/problem_solving_issues;13
The problem solving workflow;/statistics/problem_solving;14
Mixed effects models with more than two levels;/statistics/three_levels;15
Leveraging mixed-effect models;/statistics/bambi_multilevel;16
Random models and mixed models;/statistics/random_models;17
Hierarchical models and meta-analysis;/statistics/hierarchical_metaanalysis;18
Hierarchical models;/statistics/hierarchical_models;19
Poisson regression;/statistics/poisson_regression;20
Logistic regression;/statistics/logistic_regression;21
Robust linear regression;/statistics/robust_regression;22
Multi-linear regression;/statistics/multivariate_regression;23
Linear regression with binary input;/statistics/regression_binary_input;24
Introduction to the linear regression;/statistics/regression;25
Model comparison, cont.;/statistics/model_averaging_cont;26
Model comparison;/statistics/model_averaging;27
Re-parametrizing your model;/statistics/reparametrization;28
Predictive checks;/statistics/predictive_checks;29
Trace inspection;/statistics/trace_inspection;30
Introduction to the Bayesian workflow;/statistics/bayesian_workflow;31
Mixture models;/statistics/mixture;32
Multidimensional distributions;/statistics/categories;33
The Gaussian model;/statistics/reals;34
Bonus: counting animals in a park;/statistics/hypergeom;35
The Negative Binomial model;/statistics/negbin;36
The Poisson model;/statistics/poisson;37
The Beta-Binomial model;/statistics/betabin;38
Section introduction;/statistics/simple_models_intro;39
Some notation about probability;/statistics/probability_reminder;40
How does MCMC works;/statistics/mcmc_intro;41
Introduction to Bayesian inference;/statistics/bayes_intro;42
An overview to statistics;/statistics/preface;43
The Gestalt principles;/dataviz/gestalt;44
Design tricks;/dataviz/design-introduction;45
How to choose a color map;/dataviz/palettes-introduction;46
Introduction to color perception;/dataviz/color-introduction;47
Drawing is redrawing;/dataviz/gender-economist;48
Visual queries;/dataviz/visual-queries;49
Channel effectiveness;/dataviz/effectiveness;50
Evolutions of the line chart;/dataviz/linechart-evolution;51
Beyond the 1D scatterplot;/dataviz/scatterplot-evolution;52
Perception;/dataviz/perception;53
Fundamental charts;/dataviz/fundamental-charts;54
Marks and channels;/dataviz/marks-channels;55
Data abstraction;/dataviz/data-types;56
Data visualization;/dataviz/dataviz;57
0
About me
Resources
Up
Home
A personal blog about data visualization and data analysis.
Welcome to my blog! Here I will share some ideas about dataviz and data science.
Data Visualization
Statistics
GIS and geostatistics