Mastodon
Regression discontinuity design;/statistics/rdd;1
Difference in difference;/statistics/difference_in_differences;2
Instrumental variable regression;/statistics/instrumental_variable;3
Randomized controlled trials;/statistics/randomized;4
Validity;/statistics/validity;5
Causal inference and Bayesian networks;/statistics/causal_intro_2;6
Causal inference;/statistics/causal_intro;7
Nested factor;/statistics/nested_factors;8
Repeated measures;/statistics/repeated_measures;9
Split plot design;/statistics/split_plot;10
Crossover design;/statistics/crossover;11
Latin square design;/statistics/latin_square;12
Full factorial design;/statistics/full_factorial;13
Completely randomized design;/statistics/crd;14
Design of experiments;/statistics/doe;15
Stratification;/statistics/stratification;16
Random sampling;/statistics/random_sampling;17
Data collection;/statistics/data_collection;18
Things that could go wrong;/statistics/problem_solving_issues;19
The problem solving workflow;/statistics/problem_solving;20
Mixed effects models with more than two levels;/statistics/three_levels;21
Leveraging mixed-effect models;/statistics/bambi_multilevel;22
Random models and mixed models;/statistics/random_models;23
Hierarchical models and meta-analysis;/statistics/hierarchical_metaanalysis;24
Hierarchical models;/statistics/hierarchical_models;25
Poisson regression;/statistics/poisson_regression;26
Logistic regression;/statistics/logistic_regression;27
Robust linear regression;/statistics/robust_regression;28
Multi-linear regression;/statistics/multivariate_regression;29
Linear regression with binary input;/statistics/regression_binary_input;30
Introduction to the linear regression;/statistics/regression;31
Model comparison, cont.;/statistics/model_averaging_cont;32
Model comparison;/statistics/model_averaging;33
Re-parametrizing your model;/statistics/reparametrization;34
Predictive checks;/statistics/predictive_checks;35
Trace inspection;/statistics/trace_inspection;36
Introduction to the Bayesian workflow;/statistics/bayesian_workflow;37
Mixture models;/statistics/mixture;38
Multidimensional distributions;/statistics/categories;39
The Gaussian model;/statistics/reals;40
Bonus: counting animals in a park;/statistics/hypergeom;41
The Negative Binomial model;/statistics/negbin;42
The Poisson model;/statistics/poisson;43
The Beta-Binomial model;/statistics/betabin;44
Section introduction;/statistics/simple_models_intro;45
Some notation about probability;/statistics/probability_reminder;46
How does MCMC works;/statistics/mcmc_intro;47
Introduction to Bayesian inference;/statistics/bayes_intro;48
An overview to statistics;/statistics/preface;49
The Gestalt principles;/dataviz/gestalt;50
Design tricks;/dataviz/design-introduction;51
How to choose a color map;/dataviz/palettes-introduction;52
Introduction to color perception;/dataviz/color-introduction;53
Drawing is redrawing;/dataviz/gender-economist;54
Visual queries;/dataviz/visual-queries;55
Channel effectiveness;/dataviz/effectiveness;56
Evolutions of the line chart;/dataviz/linechart-evolution;57
Beyond the 1D scatterplot;/dataviz/scatterplot-evolution;58
Perception;/dataviz/perception;59
Fundamental charts;/dataviz/fundamental-charts;60
Marks and channels;/dataviz/marks-channels;61
Data abstraction;/dataviz/data-types;62
Data visualization;/dataviz/dataviz;63
0
About me
Resources
Up
Home
A personal blog about data visualization and data analysis.
Welcome to my blog! Here I will share some ideas about dataviz and data science.
Data Visualization
Statistics
GIS and geostatistics