Mastodon
Difference in difference;/statistics/difference_in_differences;1
Instrumental variable regression;/statistics/instrumental_variable;2
Randomized controlled trials;/statistics/randomized;3
Validity;/statistics/validity;4
Causal inference and Bayesian networks;/statistics/causal_intro_2;5
Causal inference;/statistics/causal_intro;6
Nested factor;/statistics/nested_factors;7
Repeated measures;/statistics/repeated_measures;8
Split plot design;/statistics/split_plot;9
Crossover design;/statistics/crossover;10
Latin square design;/statistics/latin_square;11
Full factorial design;/statistics/full_factorial;12
Completely randomized design;/statistics/crd;13
Design of experiments;/statistics/doe;14
Stratification;/statistics/stratification;15
Random sampling;/statistics/random_sampling;16
Data collection;/statistics/data_collection;17
Things that could go wrong;/statistics/problem_solving_issues;18
The problem solving workflow;/statistics/problem_solving;19
Mixed effects models with more than two levels;/statistics/three_levels;20
Leveraging mixed-effect models;/statistics/bambi_multilevel;21
Random models and mixed models;/statistics/random_models;22
Hierarchical models and meta-analysis;/statistics/hierarchical_metaanalysis;23
Hierarchical models;/statistics/hierarchical_models;24
Poisson regression;/statistics/poisson_regression;25
Logistic regression;/statistics/logistic_regression;26
Robust linear regression;/statistics/robust_regression;27
Multi-linear regression;/statistics/multivariate_regression;28
Linear regression with binary input;/statistics/regression_binary_input;29
Introduction to the linear regression;/statistics/regression;30
Model comparison, cont.;/statistics/model_averaging_cont;31
Model comparison;/statistics/model_averaging;32
Re-parametrizing your model;/statistics/reparametrization;33
Predictive checks;/statistics/predictive_checks;34
Trace inspection;/statistics/trace_inspection;35
Introduction to the Bayesian workflow;/statistics/bayesian_workflow;36
Mixture models;/statistics/mixture;37
Multidimensional distributions;/statistics/categories;38
The Gaussian model;/statistics/reals;39
Bonus: counting animals in a park;/statistics/hypergeom;40
The Negative Binomial model;/statistics/negbin;41
The Poisson model;/statistics/poisson;42
The Beta-Binomial model;/statistics/betabin;43
Section introduction;/statistics/simple_models_intro;44
Some notation about probability;/statistics/probability_reminder;45
How does MCMC works;/statistics/mcmc_intro;46
Introduction to Bayesian inference;/statistics/bayes_intro;47
An overview to statistics;/statistics/preface;48
The Gestalt principles;/dataviz/gestalt;49
Design tricks;/dataviz/design-introduction;50
How to choose a color map;/dataviz/palettes-introduction;51
Introduction to color perception;/dataviz/color-introduction;52
Drawing is redrawing;/dataviz/gender-economist;53
Visual queries;/dataviz/visual-queries;54
Channel effectiveness;/dataviz/effectiveness;55
Evolutions of the line chart;/dataviz/linechart-evolution;56
Beyond the 1D scatterplot;/dataviz/scatterplot-evolution;57
Perception;/dataviz/perception;58
Fundamental charts;/dataviz/fundamental-charts;59
Marks and channels;/dataviz/marks-channels;60
Data abstraction;/dataviz/data-types;61
Data visualization;/dataviz/dataviz;62
0
About me
Resources
Up
Home
A personal blog about data visualization and data analysis.
Welcome to my blog! Here I will share some ideas about dataviz and data science.
Data Visualization
Statistics
GIS and geostatistics