Mastodon
Design of experiments;/statistics/doe;1
Stratification;/statistics/stratification;2
Random sampling;/statistics/random_sampling;3
Data collection;/statistics/data_collection;4
Things that could go wrong;/statistics/problem_solving_issues;5
The problem solving workflow;/statistics/problem_solving;6
Mixed effects models with more than two levels;/statistics/three_levels;7
Leveraging mixed-effect models;/statistics/bambi_multilevel;8
Random models and mixed models;/statistics/random_models;9
Hierarchical models and meta-analysis;/statistics/hierarchical_metaanalysis;10
Hierarchical models;/statistics/hierarchical_models;11
Poisson regression;/statistics/poisson_regression;12
Logistic regression;/statistics/logistic_regression;13
Robust linear regression;/statistics/robust_regression;14
Multi-linear regression;/statistics/multivariate_regression;15
Linear regression with binary input;/statistics/regression_binary_input;16
Introduction to the linear regression;/statistics/regression;17
Model comparison, cont.;/statistics/model_averaging_cont;18
Model comparison;/statistics/model_averaging;19
Re-parametrizing your model;/statistics/reparametrization;20
Predictive checks;/statistics/predictive_checks;21
Trace inspection;/statistics/trace_inspection;22
Introduction to the Bayesian workflow;/statistics/bayesian_workflow;23
Mixture models;/statistics/mixture;24
Multidimensional distributions;/statistics/categories;25
The Gaussian model;/statistics/reals;26
Bonus: counting animals in a park;/statistics/hypergeom;27
The Negative Binomial model;/statistics/negbin;28
The Poisson model;/statistics/poisson;29
The Beta-Binomial model;/statistics/betabin;30
Section introduction;/statistics/simple_models_intro;31
Some notation about probability;/statistics/probability_reminder;32
How does MCMC works;/statistics/mcmc_intro;33
Introduction to Bayesian inference;/statistics/bayes_intro;34
An overview to statistics;/statistics/preface;35
The Gestalt principles;/dataviz/gestalt;36
Design tricks;/dataviz/design-introduction;37
How to choose a color map;/dataviz/palettes-introduction;38
Introduction to color perception;/dataviz/color-introduction;39
Drawing is redrawing;/dataviz/gender-economist;40
Visual queries;/dataviz/visual-queries;41
Channel effectiveness;/dataviz/effectiveness;42
Evolutions of the line chart;/dataviz/linechart-evolution;43
Beyond the 1D scatterplot;/dataviz/scatterplot-evolution;44
Perception;/dataviz/perception;45
Fundamental charts;/dataviz/fundamental-charts;46
Marks and channels;/dataviz/marks-channels;47
Data abstraction;/dataviz/data-types;48
Data visualization;/dataviz/dataviz;49
0
About me
Resources
Home
A personal blog about data visualization and data analysis.
Welcome to my blog! Here I will share some ideas about dataviz and data science.
Data Visualization
Statistics
GIS and geostatistics